模具之家讯:热处理新技术新工艺的快速发展,高速钢不仅广泛应用于冷作模具,在热作模具上的应用也日益成熟。对高速钢原材料进行锻造,变共晶碳化物脆性相为强化相,显著提高模具使用寿命。但因种种原因,锻造和淬火会导致多种裂纹形成,分析原因,采取有效消除措施,具显著技术经济效益。
一、高速钢冶金缺陷引起锻造裂纹
高速钢属莱氏体钢,含有大量合金元素,形成大量共晶碳化物和二次碳化物。共晶碳化物呈粗大骨骼状或树枝分布于基体。不良碳化物硬而脆,是脆性相。钢锭虽经开坯压延和轧制,共晶碳化物有一定程度碎化,但碳化物偏析依然严重。沿轧制方向呈带状、网状、大颗粒状和堆集状分布。碳化物不均匀度随原材料直径和厚度增加而严重。共晶碳化物相当稳定,常规热处理无法消除,导致锻造时应力集中,成为裂纹源。钢中硫(S)、磷(P)等有害杂质易引起热脆和冷脆裂纹。原材料存在组织疏松、缩孔、气泡、白点、粗晶、内裂和非金属夹杂,急降低钢的热塑性与强韧性,加之,高速钢导热性差,仅为碳钢的三分之一,热塑性差,变形抗力大,锻造第一锤重击即可碎裂。
措施—严格原材料入库和投产前的材质检验,钢材合格方可投产;选用小钢锭开坯轧制各种原材料;选用二次精炼电渣重溶钢锭,具有纯度高、杂质少、晶粒细、碳细物小、无偏析、等向性能优,化学成分和组织均匀等特点;对原材料进行科学合理锻造,击碎不均匀共晶碳化物,使之≤3级,变不均匀共晶碳化物脆性相为强化相,发生质的飞跃;锻坯应充分预热,均匀加热,充分透烧,勤翻动坯料和采用轻一重一轻双十字形变向锻拔造法,先镦后拔次序操作等措施,有效避免锻造碎裂。
二、对角线锻裂和过热淬火裂纹
因原材料有中心疏松和碳化物剥落等缺陷聚集扩展形成精糙对角线裂口;锻坯加热温度过高,出现粗晶堆积,降低钢材强韧性。锻坯加热温度过低,材料热塑性差,变形抗力大;拔长操作时送进量过大,引起锻件横向展宽塑性变形过度等因素,引发锻件对角线裂纹。
高速钢过热、过烧组织引发淬火裂纹因晶粒显著粗化,出现碳化物粘连、角状和拖尾及沿晶界呈全网状、半网状和连续网状分布;钢组织内部局部溶化,出现黑色组织或共晶莱氏体,形成过热组织,显著降低钢的强韧性,易应力集中,是引起淬火裂纹的主要因素。因淬火加热温度过高,控温仪表失灵;原材料存在大量角状碳化物和碳化物不均匀度等级太高,易产生大的应力集中等原因,均会导致淬火裂纹。
措施—依据坯料对角线区域温度变化调整锤击频率,避免因“热效应”造成塑性变形区温度过高;拔长时送进长度与坯料高度之比不大于1,可减少横向展宽和防止同一部位连续重击、连击、压下量应适度,端面尽量放正和选用合适的锻压设备等措施,可有效避免锻件对角线裂纹。
材料入库和投产前检查材质是否合格,确保原材料无宏观冶金缺陷;控制共晶碳化物≤3级,呈细小匀分布于钢基体;模具淬火前用试片校验高温盐溶炉温度,核实晶粒度等级与淬火加热温度关系;采用微机控温,达到测温精度±3℃和加强科学生产管理等措施,能有效防止和避免因过热组织产生的淬火裂纹。
三、锻件纵向表面裂纹和萘状断口与淬火裂纹
因原材料表面存在显微裂纹在锻造过程被拉长和扩展;矩形截面长、宽比过大,拔长时形成横向弯曲,导致宽侧表面产生细而浅,长短不一呈纵向分布的表面裂纹;锻件表面温度过低,热塑性急剧降低,变形抗力大;锻后冷速过快和锻后室温停留时间过长等因素,均会导致锻件表面纵向裂纹。
萘状断口是高速钢常见组织缺陷,易引发淬火裂纹。其断口呈鱼鳞状,类似大理石,象萘一样闪光,断口极粗糙,晶粒可达Φ1mm,钢的脆性大,强韧性低劣,高温奥氏体化加热和淬火时应力集中大,导致产生淬火裂纹。当热、锻、轧或压延热加工时,经1050℃~1100℃高温奥氏体化热塑性变形在5%~10%临界变形和精锻温度不当及重复淬火时未经中间退火,或退火不充分等因素,均会导致高速钢形成脆性大的萘状断口,导致淬火时产生裂纹。
措施—锻前磨去原材料表面斑疤、氧化皮、微裂纹、折迭等缺陷,再经探伤合格后投产;拔长时,截面长、宽比大于3的锻坯不得发生横向弯曲;出现后及时在高温下校直;锻后坑冷、灰冷、炉冷或乘高温余热退火,避免产生延时裂纹等措施,能有效消除锻件表面纵向裂纹。
科学合理制订精锻温度,严格控制终锻温度在950℃~1000℃之间和锻后缓冷与及时退火;对组织粗大原材料进行晶粒超细化处理等措施,能有效抑制高速钢脆性萘状断口形成,避免产生淬火裂纹。
模具之家为您提供最全面的塑胶,塑料,模具,模具设计,塑胶模具品牌的装修知识点和各种塑胶模具的导购与在线购买服务,拥有最便宜的塑胶模具价格和最优质的售后服务,敬请登陆模具之家:http://muju.jc68.com/