模具知识|液压泵轴承故障诊断网络法研究

   更新日期:2017-03-24     来源:建材之家    作者:模具之家    浏览:50    评论:0    
核心提示:摘要:研究了基于集成BP网络的液压泵轴承故障诊断方法。利用频域和倒频域 进行特征提取,采用集成BP网络进行故障诊断和识别,解决了液压泵轴承故障特征提出困难 、多故障识别困难的问题。试验结果表明,利用集成BP网络可以有效地诊断与识别液压泵轴承多故障模式,并且具有很强的鲁棒性。  关键词:液压泵;轴承故障;故障诊断;集成BP网络   在航空工业中,液压系统的工作性能直接影响着飞机的安全和旅客的生命,

潮流家居|124平现代简约沉稳艺术美家

推荐简介:随着“80年代”的逐渐成熟以及新新人类的推陈出新,我们有理由相信,现代前卫的装修设计风格不仅不会衰落,反而会在内容和形式上更加出人意料,夺人耳目。124平现代简约沉稳艺术美家124平现代简约沉稳艺术美家124平现代简约沉稳艺术美家124平现代简约沉稳艺术美家以上关于家居的介绍就到这里了,希望对您能够有所帮助。如果想要了解更多资讯,请多多关注,可以查看和订阅更多相关内容和资讯。大家也可以登......
模具之家讯:摘要:研究了基于集成BP网络的液压泵轴承故障诊断方法。利用频域和倒频域 进行特征提取,采用集成BP网络进行故障诊断和识别,解决了液压泵轴承故障特征提出困难 、多故障识别困难的问题。试验结果表明,利用集成BP网络可以有效地诊断与识别液压泵轴承多故障模式,并且具有很强的鲁棒性。


关键词:液压泵;轴承故障;故障诊断;集成BP网络


在航空工业中,液压系统的工作性能直接影响着飞机的安全和旅客的生命,而液压泵是液压 系统的动力源,因此对液压泵的状态监控与故障诊断尤为重要。轴承故障是液压泵常见的故 障模式之一,由于轴承故障所引起的附加振动相对于液压泵的固有振动较弱,因而很难把故 障信息从信号中分离开来。到目前为止,对液压泵轴承故障的故障诊断尚缺少十分有效的方 法。本文提出在频域和倒频域进行特征提取,旨在解决轴承特征提取困难的问题并利用集成 BP网络解决多故障诊断与识别和鲁棒性问题。


1 液压泵轴承故障的特征提取


对于机械系统而言,如有故障则一定会引起系统的附加振动。振动信号是动态信号,它包含 的信息丰富,很适合进行故障诊断。但是如果附加振动信号由于固有信号或外界干扰对故障 信号的干扰很大而淹没,那么如何从振动信号中提取有用信号就显得十分关键。


根据摩擦学理论,当轴承流动面的内环、外环滚道及滚柱上出现一处损伤,滚道的表面平滑 受到破坏,每当滚子滚过损伤点,都会产生一次振动。假设轴承零件为刚体,不考虑接触变 形的影响,滚子沿滚道为纯滚。


Hilbert变换用于信号分析中求时域信号的包络,以达到对功率谱进行平滑从而突出故 障信息。定义信号:为最佳包络。倒谱包络模型实质是对从传感器获得的信号进行倒频谱分析,然后对其倒频谱信号进行包络提取,从而双重性地突出了故障信息,为信噪比小的故障特征的提取提供了依据。

2 集成BP网络进行故障诊断的原理


神经网络的组织结构是由求解问题的领域特征决定的。由于故障诊断系统的复杂性,将神经网络应用于障诊断系统的设计中,将是大规模神经网络的组织和学习问题。为了减少工作的复杂性,减少网络的学习时间,本文将故障诊断知识集合分解为几个逻辑上独立的子集合,每个子集合再分解为若干规则子集,然后根据规则子集来组织网络。每 个规则子集是一个逻辑上独立的子网络的映射,规则子集间的联系,通过子网络的权系矩阵表示。各个子网络独立地运用BP学习算法分别进行学习训练。由于分解后的子网络比原来的网络规模小得多且问题局部化了,从而使训练时间大为减少。利用集成BP网络进行液压泵轴承故障诊断的信息处理能力源于神经元的非线性机理特性和BP算法。


3、神经网络鲁棒性的研究


神经网络的鲁棒性是指神经网络对故障的容错能力。众所周知,人脑具有容错特性,大脑中个别神经元的损伤不会使它的总体性能发生严重的降级,这是因为大脑中每一概念并非只保存在一个神经元中 ,而是散布于许多神经元及其连接之中。大脑可以通过再次学习, 使因一部分神经元的损伤而淡忘的知识重新表达在剩余的神经元中。由于神经网络是对生物神经元网络的模拟,所以神经网络的最大特征是具有“联想记忆”功能,即神经网络可以由以往的知识组合,在部分信息丢失或部分信息不确定的条件下,用剩余的特征信息做出正确的诊断。表2给出了轴承6个特征信息中某些输入特征不正确或不确定情况下正确诊断和识别的成功率。


表1 神经网络鲁棒性统计表

输入特征不确定元素 诊断成功率

一个特征参数不确定 100%

二个特征参数不确定 94%

三个特征参数不确定 76%

四个特征参数不确定 70%

五个特征参数不确定 20%

六个特征参数不确定 8%

由表1可以看出,利用集成神经网络进行故障诊断可以在丢失了大量信息的情况下(近一半特征参数不确定)仍可以作出正确判断的成功率相当高(76%~100%)因而集成神经网络具有很强能力


5 结论


由于神经网络具有自学习、自组织、联想记忆等多种功能决定了神经网络方法是很适合于进行故障诊断研究。本文利用频域和倒频域的振动信号作为特征参数,利用集成BP网络实现了液压泵轴承的多故障诊断与识别。试验结果表明,该方法具有很高的成功率和鲁棒性.

模具之家为您提供最全面的塑胶,塑料,模具,模具设计,塑胶模具品牌的装修知识点和各种塑胶模具的导购与在线购买服务,拥有最便宜的塑胶模具价格和最优质的售后服务,敬请登陆模具之家:http://muju.jc68.com/
小程序码
 
打赏
 
更多>文章标签:模具之家
更多>同类模具塑胶资讯
0相关评论

推荐图文更多...
点击排行更多...
模具塑胶商机更多...
模具商圈更多...
推荐产品更多...
双碳之家 | 橱柜之家 | 布艺之家 | 卫浴之都 | 建材头条 | 灯具之家 | 电气之家 | 瓷砖之家 | 区快洞察 | 全景头条 | 陶瓷之家 | 油漆之家 | 照明之家 | 防水之家 | 防盗之家 | 博一建材 | 卫浴之家 | 区快洞察 | 木板之家 | 地板之家 | 防水之家 | 门窗之家 | 家电之家 | 五金之家 | 水电之家 | 防盗之家 | 石材之家 | 电气之家 | 地板之家 | 陶瓷头条 | 橱柜之家 | 卫浴头条 | 布艺之家 | 家纺头条 | 暖气头条 | 墙布头条 | 建材头条 | 装修之家 | 新基建头条 | 双碳之家 | 全景头条 | 建材之家 | 深圳建材 | 揭阳建材 | 香港建材 | 佛山建材 | 广州建材 | 东莞建材 | 惠州建材 | 潮州建材 | 汕头建材 | 珠海建材 | 江门建材 | 韶关建材 | 湛江建材 | 茂名建材 | 肇庆建材 | 梅州建材 | 汕尾建材 | 河源建材 | 阳江建材 | 清远建材 | 中山建材 | 云浮建材 |
建材 | 720全景 | 企业之家 | 移动社区 | 关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图 | 排名推广 | 广告服务 | 积分换礼 | RSS订阅 | sitemap | 粤ICP备14017808号
(c)2015-2017 BO-YI.COM SYSTEM All Rights Reserved
Powered by 模具之家